# Public expenditures in Africa before, during, and after Covid-19

Shanta Devarajan Georgetown University June 2021

# The Covid-19 pandemic

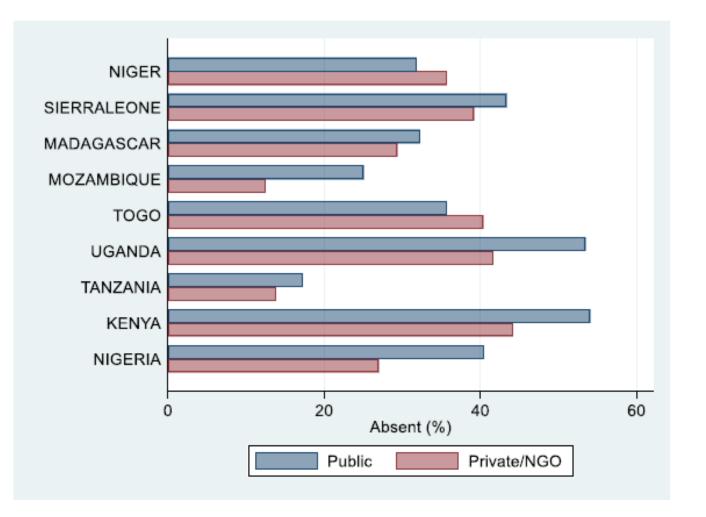
- Market failure
  - One infected person can infect several others
  - Benefits of preventing spread of infection accrue to society but cost (maskwearing, social distancing, working from home) is borne by the individual
- Role for government (public spending on health, etc., regulation)
- But there are many government failures
  - Incentives to deliver public services
  - Lack of political support for expenditures that help the poor
- How can governments intervene to correct both market and government failures?

# I. Health spending

# Higher share of public health spending goes to the richest 20% than to the poorest 20%

| Country                                 | Quintile shares of |         |         |         |         |                       | Total subsidy as |            |         |                                   |  |
|-----------------------------------------|--------------------|---------|---------|---------|---------|-----------------------|------------------|------------|---------|-----------------------------------|--|
|                                         | -                  |         |         | •       |         | Hospital<br>inpatient |                  | All health |         | %<br>of per capita<br>expenditure |  |
|                                         | Poorest            | Richest | Poorest | Richest | Poorest | Richest               | Poorest          | Richest    | Poorest | Richest                           |  |
| Africa                                  |                    |         |         |         |         |                       |                  |            |         |                                   |  |
| Côte d'Ivoire (1995) <sup>a</sup>       | 14                 | 22      | 8       | 39      |         |                       | 11               | 32         | 2.0     | 1.3                               |  |
| Ghana (1992)                            | 10                 | 31      | 13      | 35      | 11      | 32                    | 12               | 33         | 3.5     | 2.3                               |  |
| Guinea (1994) <sup>a</sup>              | 10                 | 36      | 1       | 55      |         |                       | 4                | 48         |         |                                   |  |
| Kenya (1992) <sup>a, b</sup>            | 22                 | 14      | 13      | 26      |         |                       | 14               | 24         | 6.0     | 1.1                               |  |
| Madagascar (1993) <sup>a</sup>          | 10                 | 29      | 14      | 30      |         |                       | 12               | 30         | 4.5     | 0.5                               |  |
| United Republic of<br>Tanzania (1992–93 | 18<br>3)           | 21      | 11      | 37      | 20      | 36                    | 17               | 29         | NAc     | NA                                |  |
| South Africa (1994) <sup>a</sup>        | 18                 | 10      | 15      | 17      |         |                       | 16               | 17         | 28.2    | 1.5                               |  |
| Others                                  |                    |         |         |         |         |                       |                  |            |         |                                   |  |
| Indonesia (1990)                        | 18                 | 16      | 7       | 41      | 5       | 41                    | 12               | 29         | 1.0     | 0.5                               |  |
| Viet Nam (1993)                         | 20                 | 10      | 9       | 39      | 13      | 24                    | 12               | 29         | 2.1     | 0.9                               |  |

<sup>a</sup> Hospital subsidies combine inpatient and outpatient spending.


<sup>b</sup> Rural only.

<sup>c</sup> NA = not available.

### Resources leak before reaching the clinic

| Country (year)          | % of cash/in-kind resources leaked | Resource Category  |
|-------------------------|------------------------------------|--------------------|
| Kenya (2004)            | 38                                 | Non-salary budget  |
| Tanzania (1991)         | 41                                 | Non-salary budget  |
| Uganda (2000)           | 70                                 | Drugs and supplies |
| Ghana (2000)            | 80                                 | Non-salary budget  |
| Chad (2004)             | 99                                 | Non-salary budget  |
| Source: Gauthier (2006) |                                    |                    |

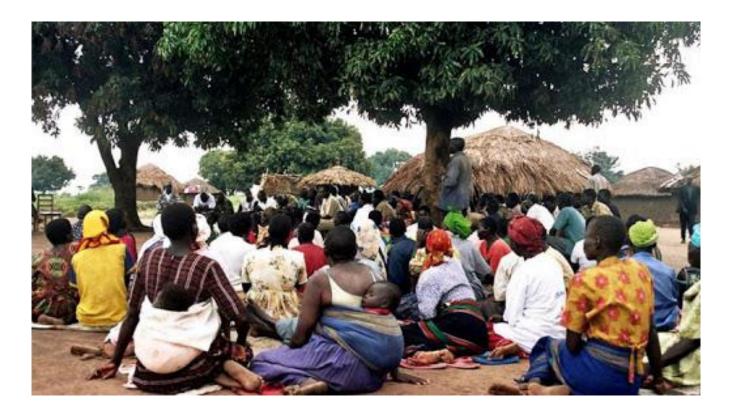
### Health providers are often absent



Gatti, R. et al., Service Delivery Indicators: Insights into the Quality of Health and Education in Ten African Countries, 2021

### When present, providers spend very little time with patients Tanzania

Table 22: Time Spent Counseling Patients per Clinician (per day)


| All     | Rural   | Urban    |  |
|---------|---------|----------|--|
| 29 min  | 26 min  | 36 min   |  |
| (4 min) | (4 min) | (11 min) |  |

Note: Weighted mean with standard errors adjusted for weighting and clustering in parenthesis. 165 observations, of which 39 are urban health facilities.

Source: Tanzania: Service Delivery Indicators, World Bank, 2013

### What can be done?

• Community participation



### Effects of community-based monitoring of health providers

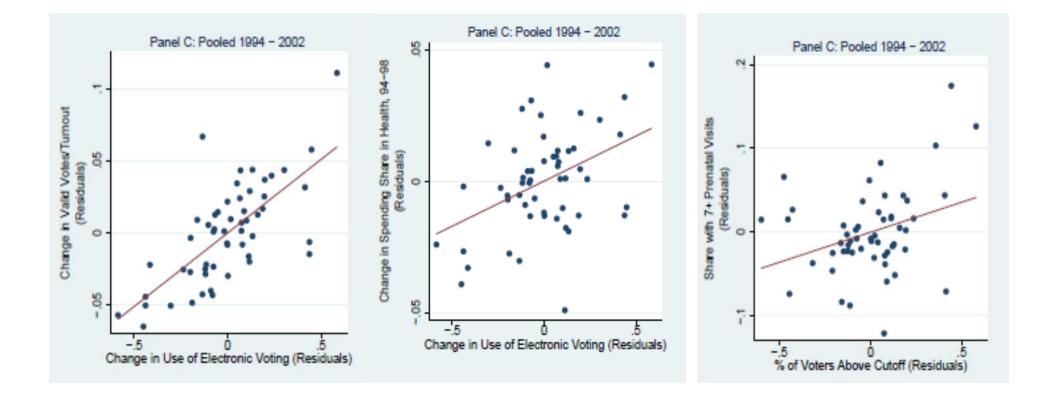
|                                         | PROGRAM IMPACT ON HEALTH OUTCOMES |                    |                |                          |                  |                             |
|-----------------------------------------|-----------------------------------|--------------------|----------------|--------------------------|------------------|-----------------------------|
| Dependent variable                      | Births                            | Pregnancies        | U5MR           | Child death              | 2-6              | t-for-age<br>cores          |
| S pecification:                         | (1)                               | (2)                | (3)            | (4)                      | (5)              | (6)                         |
| Program impact                          | -0.016<br>(0.013)                 | -0.08**<br>(0.014) | -499*<br>(269) |                          | 0.14**<br>(0.07) | 0.14**<br>(0.07)            |
| Child age (log)                         |                                   |                    |                |                          |                  | -1.27***                    |
| Fern al e                               |                                   |                    |                |                          |                  | (0.07)<br>0.27***<br>(0.09) |
| Program impact × year<br>of birth 2005  |                                   |                    |                | $-0.026^{**}$<br>(0.013) |                  |                             |
| Program impact × year<br>of birth 2004  |                                   |                    |                | -0.019**<br>(0.008)      |                  |                             |
| Program impact × year<br>of birth 2003  |                                   |                    |                | 0.003 (0.009)            |                  |                             |
| Program impact × year<br>of birth 2002  |                                   |                    |                | 0.000 (0.006)            |                  |                             |
| Program impact × year<br>of birth 2001  |                                   |                    |                | 0.002 (0.006)            |                  |                             |
| Mean control group 2005<br>Observations | $0.21 \\ 4,996$                   | 0.29<br>4,996      | 144<br>50      | 0.029<br>5,094           | -0.71<br>1, 135  | -0.71<br>1,135              |

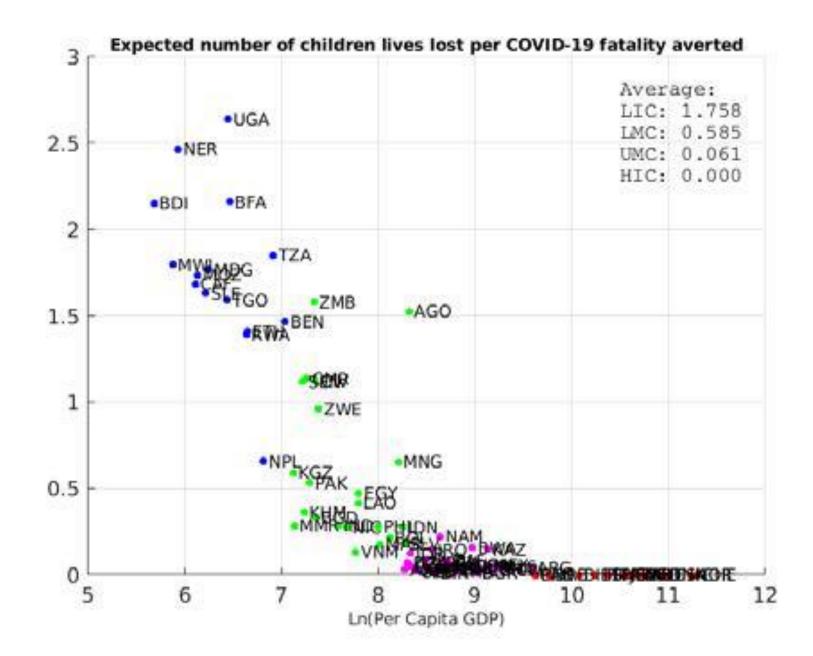
TABLE VI PROGRAM IMPACT ON HEALTH OUTCOMES

Note: Estimates from equation (1) with district fixed effects and baseline covariates as listed in Table II included Specification (4) also includes a full set of year-of-birth indicator. Rebut standard errors in parentheses (3), dute set by estementaries (1-6), (4-6). Program impactmentaries the coefficient on the assignment to treatment indicator: Specifications: (1) Number of births in the household in 2005; (2) indicator variable for whether any women in the household are or ware program in 2005; (3) USMR is under 5 mortality mits in the community or present provide the last for databal; (4) indicator variable for child do ath in 2005; (-4) weight-for age ascores for children under 18 morths excludings beev effons with recorded weight above the 90th presentile in the growth chart reported in Gartinovis et al. (1997).

"Significant at 10% lovel.

\*\*Significant at 5% level.

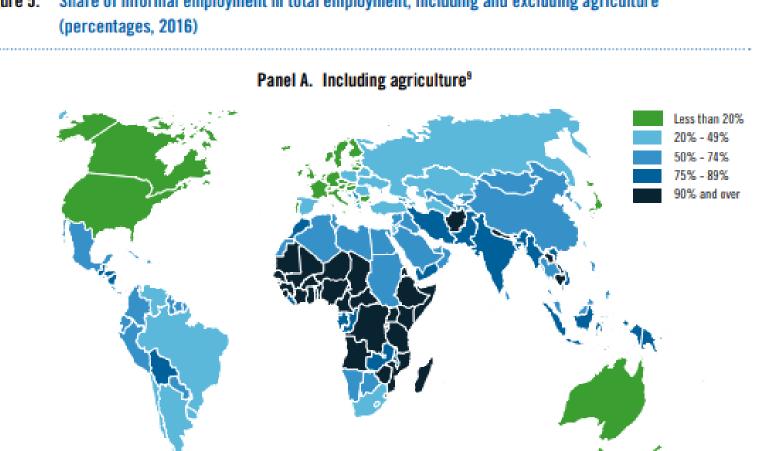

\*\*\*Significant at 1% lovel.


Source: M. Borkman and J. Svensson, Power to the People: Evidence from a Randomized Field Experiment on Community-based Monitoring in Uganda, Quarterly Journal of Economics, May 2009.

# What can be done?

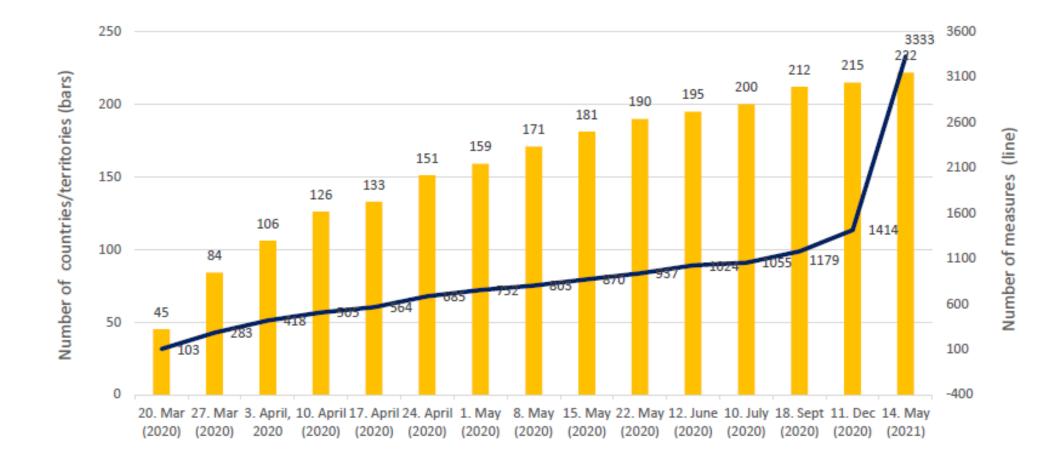
- Community participation
- Enfranchising poor voters

### Enfranchising poor citizens and health outcomes






Lin Ma, Gil Shapira, Damien de Walque, Quy-Toan Do, Jed Friedman, and Andrei A. Levchenko, The Intergenerational Mortality Tradeoff of COVID-19 Lockdown Policies, NBER Working Paper No. 28925, June 2021


## II. Social protection

### Majority of workers in Africa are self-employed or casual



Share of informal employment in total employment, including and excluding agriculture Figure 5.

Source: International Labor Office, Women and Men in Informal Employment, 2018



#### Figure 1. Evolution in number of countries/territories and social protection measures

Source: Gentilini, U. et al., Social Protection and Jobs Responses to Covid-19: Real-time Review of Country Measures, May 14, 2021

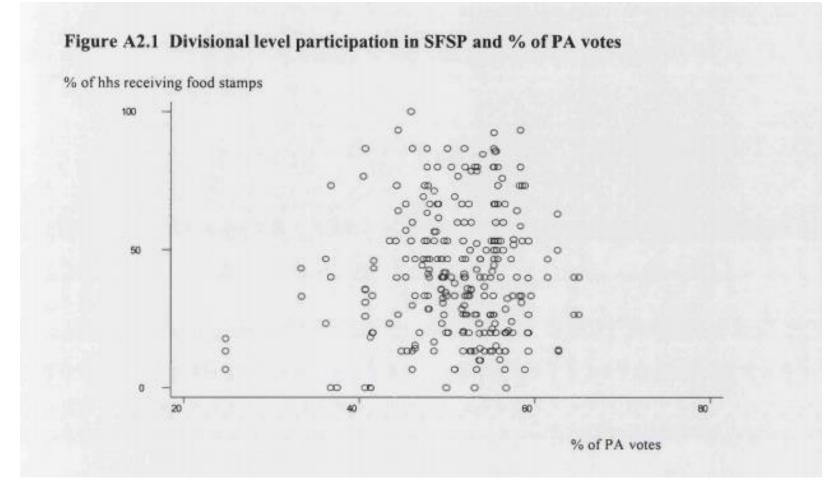
# Sri Lanka's Samurdhi program

#### Table 2.2 Distribution of Samurdhi Households by Quintiles<sup>22</sup>

| Pre-transfer Per<br>capita expenditure<br>quintiles | Total Sample | No. of Samurdhi<br>households | % of Samurdhi households |
|-----------------------------------------------------|--------------|-------------------------------|--------------------------|
| Full sample                                         | 5524*        | 2213**                        | 100                      |
| Bottom 20th percentile                              | 1043         | 659                           | 30                       |
| 20th - 40th percentile                              | 1058         | 581                           | 26.2                     |
| 40th - 60th percentile                              | 1020         | 457                           | 20.6                     |
| 60th - 80th percentile                              | 1077         | 339                           | 15.3                     |
| Top 20th percentile                                 | 1326         | 177                           | 7.8                      |
| Notes to Table 2.2:                                 |              |                               |                          |

#### Table 2.3 Samurdhi Coverage by per capita Expenditure Quintiles

| Pre-transfer Per capita<br>expenditure quintiles | N=total sample | % of N who participate in SFSP |
|--------------------------------------------------|----------------|--------------------------------|
| Full sample                                      | 5524*          | 40                             |
| Bottom 20th percentile                           | 1043           | 63.18                          |
| 20 <sup>th</sup> - 40 <sup>th</sup> percentile   | 1058           | 54.91                          |
| 40 <sup>th</sup> - 60 <sup>th</sup> percentile   | 1020           | 44.80                          |
| 60th - 80th percentile                           | 1077           | 31.48                          |
| Top 20th percentile                              | 1326           | 13.35                          |


\*Six observations were dropped since these households lacked expenditure data.

(a) \*Six observations were dropped since these households lacked expenditure data.

(b) \*\* Two observations in the Samurdhi sample lacked expenditure data.

Source: Sharif, Iffath, Social Interactions, Election Goals and Poverty Reduction: Evidence from an Anti-Poverty Program in Sri Lanka, Ph. D. Thesis, London School of Economics

### Political capture of social protection programs in Sri Lanka



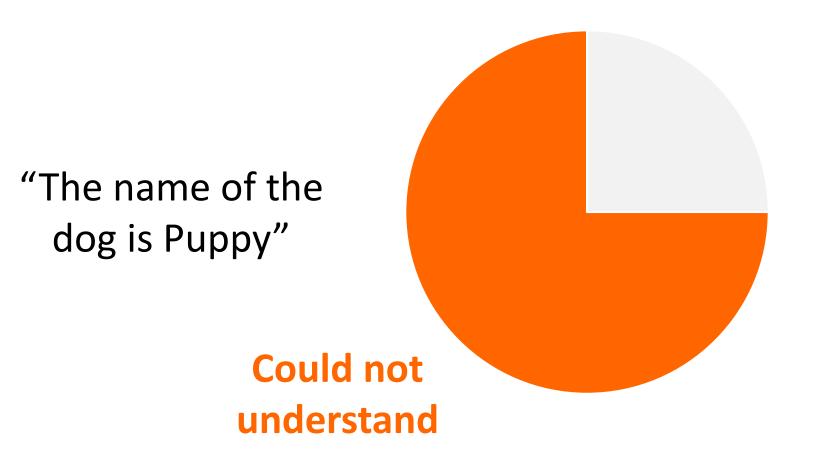
### What can be done?

• Technology for cash transfers

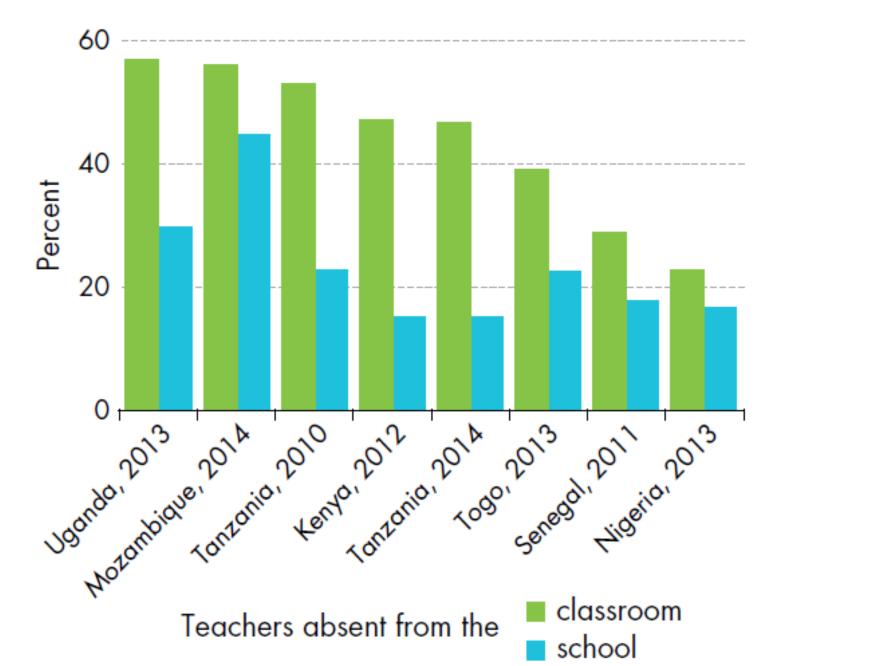


### JAM Index Selected Countries 2017

JAM=Jan Dhan bank account, Aadhar unique ID, Mobile phone




Source: A. Gelb and A. Mukherjee, "How countries can use digital payments for better, quicker transfers," Center for Global Development, April 6, 2020


# III. Education



### Kenya, Tanzania, and Uganda







\* Nigeria here is 4 States: Anambra, Bauci, Ekiti, Niger

LEARNING

\*

### Table 2 Teachers' Content Knowledge: Minimum Thresholds

|                                             | All   | Min                                                  | Max         |
|---------------------------------------------|-------|------------------------------------------------------|-------------|
| Subject knowledge: Language                 |       |                                                      |             |
| Teachers with                               |       |                                                      |             |
| 80% of knowledge equivalent to a 4th grader | 66%   | 26% (Nigeria)                                        | 94% (Kenya) |
| Minimum knowledge for teaching              | 7%    | 0% (Mozambique, Nigeria,<br>Tanzania survey I, Togo) | 34% (Kenya) |
| Number of teachers                          | 3,770 |                                                      |             |
| Subject knowledge: Mathematics              |       |                                                      |             |
| Teachers with                               |       |                                                      |             |
| Minimum knowledge for teaching              | 68%   | 49% (Togo)                                           | 93% (Kenya) |
| Number of teachers                          | 3,957 |                                                      |             |

Source: Bold, Tessa, Deon Filmer, Gayle Martin, Ezequiel Molina, Brian Stacy, Christophe Rockmore, Jakob Svensson, and Waly Wane. 2017. "Enrollment without Learning: Teacher Effort, Knowledge, and Skill in Primary Schools in Africa." *Journal of Economic Perspectives*, 31 (4): 185-204.

# What can be done?

• Teaching at the Right Level

"Teaching at the Right Level (TaRL)"

Classes held outside regular school hours that group students from different grades who are at the same level of learning.

Source: Mainstreaming an Effective Intervention: Evidence from Randomized Evaluations of "Teaching at the Right Level" in India Abhijit Banerjee, Rukmini Banerji, James Berry, Esther Duflo, Harini Kannan, Shobhini Mukherji, Marc Shotland, and Michael Walton NBER Working Paper No. 22746 October 2016

|                        | Language | Math     |
|------------------------|----------|----------|
| A. Bihar – Summer Camp |          |          |
| Treatment              | 0.0867** | 0.0742*  |
|                        | (0.0417) | (0.0440) |
| Observations           | 2839     | 2838     |
| B. Bihar – School Year |          |          |
| M                      | 0.0168   | 0.0405   |
|                        | (0.0392) | (0.0406) |
| TM                     | 0.0426   | 0.0145   |
|                        | (0.0384) | (0.0389) |
| TMV                    | 0.125*** | 0.105*** |
|                        | (0.0350) | (0.0366) |
| Observations           | 6490     | 6490     |
| C. Uttarakhand         |          |          |
| TM                     | 0.0636   | 0.0591   |
|                        | (0.0410) | (0.0451) |
| TMV                    | 0.0119   | 0.0252   |
|                        | (0.0312) | (0.0441) |
| Observations           | 3763     | 3762     |
| D. Haryana             |          |          |
| TaRL.                  | 0.154*** | -0.00611 |
|                        | (0.0173) | (0.0170) |
| Observations           | 11963    | 11962    |
| E. Uttar Pradesh       |          |          |
| M                      | 0.0336   | 0.0449** |
|                        | (0.0219) | (0.0228) |
| 10-Day Camp            | 0.701*** | 0.694*** |
|                        | (0.0224) | (0.0242) |
| 20-Day Camp            | 0.609*** | 0.620*** |
|                        | (0.0229) | (0.0243) |
| Observations           | 17254    | 17265    |

Table 3: Language and Math Results

Standard errors in parentheses (clustered at level of randomization). Regressions control for baseline test scores, as well as gender, age, and standard at baseline. Test scores are normalized using the mean and standard deviation for the control group in each test's respective round. \*Significant at the 10 percent level. \*\*Significant at the 5 percent level. \*\*Significant at the 5 percent level. M = Materials, TM = Teachers and materials, TMV = Materials, training and volunteer support, TaRL = Teaching at the right level

# What can be done?

- Teaching at the right level
- Information about school quality

American Economic Review 2017, 107(6): 1535–1563 https://doi.org/10.1257/aer.20140774

### Report Cards: The Impact of Providing School and Child Test Scores on Educational Markets<sup>†</sup>

#### By TAHIR ANDRABI, JISHNU DAS, AND ASIM IJAZ KHWAJA\*

We study the impact of providing school report cards with test scores on subsequent test scores, prices, and enrollment in markets with multiple public and private providers. A randomly selected half of our sample villages (markets) received report cards. This increased test scores by 0.11 standard deviations, decreased private school fees by 17 percent, and increased primary enrollment by 4.5 percent.

# Conclusions

- Covid-19 involves an increase in public expenditures to both treat victims, slow the spread of the disease, and compensate the poor.
- But public expenditures have not been particularly efficient nor equitable
- The reasons have to do with incentives in the public sector and political capture
- Recent evidence: community participation, transparency, and political participation of the poor leads to better public-expenditure outcomes
- We have an opportunity to not only make the Covid-19 spending more effective but pave the way for more efficient and equitable public spending in the post-Covid era.